Evaluation of Ca2+ permeability of nicotinic acetylcholine receptors in hypothalamic histaminergic neurons.

نویسنده

  • Victor V Uteshev
چکیده

Hypothalamic histaminergic tuberomammillary (TM) neurons express nicotinic acetylcholine receptors (nAChRs) with kinetic and pharmacological properties resembling those of highly Ca(2+) permeable alpha7 nAChRs. However, the Ca(2+) permeability of TM nAChR channels has not been determined. To directly evaluate the Ca(2+) permeability of TM nAChRs, patch-clamp recordings were conducted using non-cultured acutely dissociated TM neurons and external solutions containing low (2 mM) and high (20 mM) concentrations of Ca(2+). A shift in the reversal potentials was determined from the current-voltage relationships and the permeability ratio, P(Ca)/P(Na), was estimated within the Goldman-Hodgkin-Katz constant field approximation. TM nAChRs were found to be highly Ca(2+) permeable with the permeability ratio, P(Ca)/P(Na)(nAChR) being approximately 5.9 and the fractional Ca(2+) current, P(f)(nAChR) being approximately 10.1% at -60 mV. As a positive control for the applied methods and analysis, the permeability ratio, P(Ca)/P(Na)(NMDAR) being approximately 8.3 and the fractional Ca(2+) current, P(f)(NMDAR) being approximately 13.6% at -60 mV for NMDA receptors were determined using non-cultured acutely dissociated hippocampal pyramidal neurons and found similar to previously reported values. Therefore, these results demonstrate that native TM nAChRs are highly Ca(2+) permeable, but approximately 1.4 fold less permeable to Ca(2+) than native hippocampal pyramidal NMDA receptors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of Ca permeability of nicotinic acetylcholine receptors in hypothalamic histaminergic neurons

Hypothalamic histaminergic tuberomammillary (TM) neurons express nicotinic acetylcholine receptors (nAChRs) with kinetic and pharmacological properties resembling those of highly Ca permeable a7 nAChRs. However, the Ca permeability of TM nAChR channels has not been determined. To directly evaluate the Ca permeability of TM nAChRs, patch-clamp recordings were conducted using non-cultured acutely...

متن کامل

Evaluation of nicotinic receptor of pedunculopontine tegmental nucleus in central cardiovascular regulation in anesthetized rat

Objective(s): Cholinergic neurons are important neurons in the Pedunculopontine tegmental nucleus (PPT). In this study, nicotinic receptor of the PPT in central cardiovascular regulation in the anesthetized rat was evaluated. Materials and Methods: Saline, acetylcholine (Ach; doses: 90 and 150 nmol), hexamethonium (Hexa; doses: 100 and 300 nmol) and higher doses of Hexa (300 nmol) + Ach (150 nm...

متن کامل

Nicotinic-acetylcholine receptors are functionally coupled to the nitric oxide/cGMP-pathway in insect neurons.

In addition to their ionotropic role, neuronal nicotinic acetylcholine receptors (nAChRs) can influence second messenger levels, transmitter release and gene transcription. In this study, we show that nAChRs in an insect CNS control cGMP levels by coupling to NO production. In conditions that inhibit spiking, nicotine induced cGMP synthesis. This increase in cGMP was blocked by nicotinic antago...

متن کامل

Presynaptic nicotinic acetylcholine receptors enhance GABAergic synaptic transmission in rat periaqueductal gray neurons.

The periaqueductal gray (PAG) is a major component of the descending pain inhibitory pathway, which is related to central analgesia. In the present study, we have investigated the possible roles of presynaptic nicotinic acetylcholine receptors in GABAergic transmission onto PAG neurons. In acutely isolated rat PAG neurons, GABAergic miniature inhibitory postsynaptic currents (mIPSCs) were recor...

متن کامل

The Distribution of Charged Amino Acid Residues and the Ca2+ Permeability of Nicotinic Acetylcholine Receptors: A Predictive Model

Nicotinic acetylcholine receptors (nAChRs) are cation-selective ligand-gated ion channels exhibiting variable Ca2+ permeability depending on their subunit composition. The Ca2+ permeability is a crucial functional parameter to understand the physiological role of nAChRs, in particular considering their ability to modulate Ca2+-dependent processes such as neurotransmitter release. The rings of e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta biochimica et biophysica Sinica

دوره 42 1  شماره 

صفحات  -

تاریخ انتشار 2010